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Abstract
In the most developed branches of crystallography, structure solution proceeds by two distinct
steps: first, an approximate model of the structure is deduced directly from the measured data
by an algorithm which assumes no preconceived model; second, a process of structure
refinement simulates the experimental data for systematic variations of the parameters of such a
model and determines a final structure to be that which agrees best with the data. The
developments of direct methods for surface crystallography are aimed at enabling the first of
these steps to be performed by an objective algorithm applied directly to the experimental data,
in order to avoid the (fallible) human guesswork that has been largely applied up to the present
to postulate structural models for subsequent refinement.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Crystallography is the science of the determination of the
atomic-scale structure of repeat units (or unit cells) of a
crystal from the distribution of the scattering of radiation
incident on it. If we restrict our attention initially to the far-
field measurement of weak scattering (or single scattering)
of an incident plane wave (as is usually the case with x-ray

scattering), the complex amplitudes of the scattered radiation
may be regarded as a set of Fourier coefficients of the
distribution of scattering matter within each unit cell. If these
complex amplitudes may be measured, the recovery of the
structure of the unit cell would simply require performing an
inverse Fourier transform of those amplitudes. Unfortunately,
usual crystallographic experiments measure not these complex
amplitudes, but rather their square moduli in the form of
diffracted intensities. The square roots of these measured
intensities are proportional to the (real) amplitudes of the
scattered radiation, but the corresponding phases are not
measured directly.

A major challenge of crystallography is the determination
of these phases. In the crystallography of bulk samples,
there are two main classes of techniques: those which require
information extraneous to the intensities from the diffraction
of radiation of a single wavelength, and those which require no
further information. In the former class fall three techniques
commonly used in protein crystallography, namely multiple
isomorphous replacement (MIR) (Green et al 1954, Blow
and Crick 1959) which requires extra experimental data
from related compounds with heavy-atom substitutions; multi-
wavelength anomalous dispersion (MAD) (Hendrickson 1991,
Leahy et al 1992) which requires extra diffraction data from x-
rays of wavelengths close to absorption edges of atoms of the
sample; and the technique of molecular replacement (Rossman
and Blow 1962) which requires a knowledge of the structure
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of a compound closely related to the one whose structure is
sought.

Direct methods constitute the other major class of
techniques. Such methods seek to deduce the phases associated
with the measured intensities from the very distribution of those
intensities. The quantity sought, namely the electron density
of the unit cell, has certain intrinsic restrictions on its form.
For example, an electron density is a positive definite quantity.
A realistic electron distribution also has the property of
atomicity, namely that the distribution is locally concentrated
into regions separated from each other by typical interatomic
distances. As was originally pointed out by Sayre (1952),
these restrictions on the form of the electron distributions
give rise to relationships between the phases associated with
related diffracted amplitudes. By exploiting the properties
of these relationships, it is sometimes possible to determine
all the individual phases (Woolfson 1961, Giacovazzo 1980).
However, it should be pointed out that such methods have their
greatest success for unit cells with smaller numbers of atoms,
say less than a thousand, and are not routinely used for protein
crystallography, for example.

Whichever method is used for obtaining an initial estimate
of the phases, the latter need to be refined by an iterative
process of density modification (see e.g. Drenth 1994), which
alternately satisfies constraints in real and reciprocal space.
Such a process has been termed Fourier recycling. Indeed,
recently, Oszlányi and Süto (2004) have suggested an ab initio
method of phasing high-resolution x-ray crystallographic data
by a form of Fourier recycling that involves charge flipping in
real space which may, for small molecules, actually dispense
with the need for an initial determination of phase estimates
by the methods described in the two previous paragraphs. As
pointed out by Millane (1990), such approaches are closely
analogous to methods of phase retrieval in optics. In x-ray
crystallography, the aim of such methods is to find an electron
density of sufficiently high quality to enable the building of
an initial atomistic model of the structure. The latter may be
refined by a χ2 fit to the data.

Surface crystallography is concerned with the determina-
tion of the arrangements of atoms in the outermost atomic lay-
ers of a material. If the material is crystalline, planes parallel to
the surface would exhibit two-dimensional periodicity. How-
ever, the crystal periodicity in the direction perpendicular to
the surface will be broken by the very formation of the surface
(not to mention surface relaxations and/or reconstructions). If
a plane wave of radiation is incident on the surface, the direc-
tions of the elastically diffracted beams are determined by the
intersections of the Ewald sphere with a set of rods in recipro-
cal space parallel to the direction of the surface normal, rather
than a set of reciprocal space points as in the usual crystallog-
raphy of bulk samples.

A common technique of surface crystallography is that of
surface x-ray diffraction (SXRD) (Andrews and Cowley 1985,
Robinson 1986). In order to maximize the scattering from a
surface, x-rays are incident at glancing angles to the surface.
Of course, even in this case, some x-rays will be scattered from
deeper atomic layers, and it will be useful to make a notional
distinction between surface and bulk regions. For our purposes,

we may define a bulk region as one constituted of repeat
units practically indistinguishable from bulk unit cells. The
surface region, which usually encompasses just the outermost
few atomic layers, are those in which the structure deviates
measurably from that of the bulk. It is the determination of
the structure of these surface layers that is the task of surface
crystallography.

With these definitions of surface and bulk regions, the
surface diffraction rods may be classified into two types:
the crystal truncation rods (CTRs), which have scattering
contributions from both the surface and bulk regions, and
superstructure rods (SRs) which arise purely from surface
scattering. The SRs arise when the periodicity of the surface
region in planes parallel to the surface (henceforth known
as the lateral periodicity) is different from that of the bulk.
This can arise, for example, from surface reconstructions, or
due to the presence of a surface adlayer of a different lateral
periodicity. It should also be remembered that parts of the
surface that deviate from the bulk structure but maintain the
bulk periodicity (for example due to surface relaxations) can
scatter into the CTRs. The relative dispositions of CTRs and
SRs give an indication of the relative configurations of the
surface and bulk unit cells.

The distribution of measured intensities along the CTRs
and SRs can give detailed information about the atomic-
scale structure of the surface. Even in SXRD, the most
common methodology employed up to the present for the
determination of a surface structure has been the repeated
comparisons of simulations from a series of model structures
of the CTR and SR intensity distributions with measured
data from experiment. The degree of the agreement between
simulation and experiment is determined by an objective
measure of discrepancy, e.g. a χ2 value of a least-squares fit, or
a crystallographic reliability factor (Van Hove et al 1986). In
this conventional, trial-and-error, method the correct structure
is taken as the one that minimizes the measure of discrepancy.
If a good guess can be made of the approximate structure, it is
possible to automate the refinement of a number of parameters,
such as the positions and occupancies of the atoms in the
postulated structure, the vibrational amplitudes, the relative
abundances of each of the symmetry-related domains, and
parameters characterizing the roughness of the surface (Vlieg
2000).

However, due to an almost unlimited number of possible
starting models, there is no guarantee that an appropriate
one may be guessed that will refine to the correct structure.
The number of models that need to be considered in an
exhaustive search grows exponentially with the number of
parameters considered (Pendry et al 1988). Thus, even in
surface crystallography, there is a need for the development
of a general method of extracting, directly from the measured
data, at least an approximation to the electron density of the
unknown surface unit cell that can suggest a suitable initial
model.

In the following we will describe approaches to the
development of direct methods for two of the main techniques
for surface crystallography, namely SXRD and low energy
electron diffraction (LEED). The latter technique has to deal
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with the additional complexities of multiple scattering. What
the approaches have in common is that they will both exploit a
knowledge of the structure of the bulk crystal.

2. Diffraction conditions for surface x-ray diffraction

The relative positions of atoms in a crystal surface may be
specified in a coordinate system of two unit vectors (say �a1 and
�a2) of the bulk lattice parallel to the surface, and one (say �a3)
equal to a lattice vector of the bulk in a direction perpendicular
to the surface. A set of basis vectors {�b} of the reciprocal lattice
is defined in terms of these real space basis vectors {�a} via

�ai · �b j = δi j . (1)

The significance of the basis vectors {�b} is that the complex
scattered amplitude

F�q = |F�q | exp(iφ�q), (2)

from a repeat unit of the surface (the surface structure factor)
may be regarded as a function of the reciprocal space scattering
vector �q defined in terms of the basis vectors {�b} by

�q = h �b1 + k �b2 + l �b3, (3)

where (hkl) are a set of Laue indices.
With this definition, it follows that Bragg diffraction

conditions will permit non-zero values of F(�q) only for
scattering vectors �q specified by integer values of Laue indices
h and k if the lateral periodicity of the surface is the same as
that of the bulk, and by specific fractional values of either or
both of these indices if the surface unit cell is larger than (but
still commensurate with) the bulk unit cell. As for the third
Laue index, the breaking of the periodicity in the direction
normal to the surface removes any restriction on the values
of l for permitted scattering vectors. Thus, non-zero values
of F(�q) are found along a set of rods in reciprocal space
parallel to �b3. Those corresponding to integer values of h and
k (which have scattering contributions from the bulk of the
crystal as well as the surface) are the CTRs, and those specified
by fractional values of either h or k (which arise solely from
scattering by the surface region) are the SRs.

It is important to recognize that, even for a bulk-terminated
surface, that is one in which all unit cells have exactly the
same periodicity as bulk unit cells in directions both parallel
and perpendicular to the surface, one would still expect in
the CTRs, in addition to strong peaks for scattering vectors �q
corresponding to integer values of the third Laue index l (the
Bragg peaks corresponding to the periodicity of the bulk crystal
in the direction perpendicular to the surface) also measurable
scattered intensity between these peaks. This may be purely a
consequence of the crystal truncation, even in the absence of
changes of the structures of any of the unit cells constituting
the sample. Any changes of the latter kind produces additional
contributions to the complex scattering amplitude of the CTRs
that interfere with the former (inevitable) bulk truncation
contribution. In contrast, the SRs arise only if there is some
change of the lateral periodicity of the unit cells near the
surface.

3. Limitations of the surface Patterson function

The fact that the aim of surface crystallography is the
determination of the structures of just the outermost surface
layers, while some of the measured data (the CTRs) contain
scattering contributions from other parts of the sample, such as
the bulk crystal, implies that phasing the measured intensities
alone will not be sufficient for structure determination. A
successful algorithm will need also to subtract from the CTR
data the bulk contributions, in order to access the data just
pertaining to the surface structure.

An alternative approach may be to concentrate solely on
the SR data, which does arise purely from surface scattering.
One such proposed approach is the calculation of a Patterson
function from just the SR data (see e.g. Bohr et al 1986).
A Patterson function is real space function calculated from
a Fourier transform of measured diffraction intensities in
reciprocal space, and is equivalent to an autocorrelation
function of the electron density of a unit cell. Thus a
Patterson function, simply calculated from the diffraction data,
without a need for phase determination, can reveal evidence of
interatomic vectors in a unit cell, a useful piece of information
towards structure solution.

However, as has been pointed out recently by Lyman et al
(2006) and Fung et al (2007), a Patterson function calculated
from just SR intensities is seriously limited in the surface
interatomic vectors it is able to reveal. In particular, it was
shown that such a partial Patterson function is not able to reveal
surface lattice vectors coincident with those of the bulk.

It should be noted that a conventional χ2 minimization
approach to the determination of the atomic structure of a
surface is essentially a technique for structure refinement, and
is only practically useful if the starting point is a good guess of
the structural model. Many of the simpler surface structures
may be determined from guessed structural models, but the
field of surface crystallography would receive a substantial
boost with the development of even an approximate algorithm
to deduce a structural model directly from the measured
diffraction data. It is algorithms of this sort that we term
direct methods for surface crystallography. The next section
reviews some recent progress towards the development of such
methods.

4. Direct methods for surface x-ray diffraction

There have been several proposals for a direct method for
SXRD. Rius et al (1996) proposed a method which considers
only the intensities of the in-plane (i.e. l = 0) components of
the SRs. Neglected are the data in the CTRs, where the surface
contributions are inherently combined with contributions from
the bulk. It was noted that, even if the in-plane SR
amplitudes could be phased, their inverse Fourier transform
would generate not the full surface electron density projected
onto a plane parallel to the surface, but rather the projected
difference electron density, that is the difference between
the projected surface electron density and the average of
this projected density over each constituent bulk unit cell.
This difference projected electron density can be positive or
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negative. Thus, traditional direct methods stemming from
Sayre’s equations (Sayre 1952) that rely on the similarity of
an atomistic electron density distribution to its square are
no longer applicable. However Rius et al (1996) pointed
out that an atomistic difference electron density distribution
may be regarded as similar to its cube. Unlike Sayre’s
equations, which relate a structure factor to sums of products
of two other structure factors, this leads to equations that
relate a structure factor to sums of products of three other
structure factors. Nevertheless, these authors were able to show
that even these more complicated equations may be solved
numerically to phase the in-plane data of the SRs to yield
the projected difference electron density of the surface. In
favorable cases (where the superstructure has few interatomic
vectors in common with those of the underlying bulk, and for
flat superstructures parallel to the surface) this has enabled
the solution of quite complex superstructures (Torrelles et al
1998).

A different approach has been proposed by Yacoby and co-
workers (Yacoby et al 2000). There are two variants of their
method, termed COBRA (or coherent Bragg rod analysis).
One requires the evaporation of a thin gold film onto a sample
in order to create an extra interference condition to determine
the phase variation along a CTR. The other relies on the
relatively slower variation of the phase of a surface structure
factor than that of the underlying substrate to give rise to
pairs of simultaneous equations that may be solved for the
complex structure factors of the unknown surface region. Since
both variants of this method require interference of the surface
scattering amplitudes with those of the known substrate, they
can operate only on the CTR data. Consequently, only those
surface structure factors that contribute to the CTRs may be
found, and hence this method may only strictly determine
the average surface structure. We note, however, that those
workers claim to be able (in favorable cases) to unravel the
unfolded surface structure using additional considerations such
as the bulk structure of an epitaxial film (Sowwan et al 2002).

The method of Rius et al operates solely on the data of
SRs, while that of Yacoby et al solely on those of the CTRs.
An ideal direct method for surface crystallography would use
the information in both CTRs and SRs and would be able to
recover the full 3D structure of a surface unit cell. Such a
scheme has been proposed by Marks (1999) that ‘exploits the
existence of a support constraint normal to the surface, and
couples the concepts of projections, operators, and sets used
in the image reconstruction literature with statistical operators
used in direct methods’. It also assumes that ‘the scattering
comes from atoms’, and has helped determine the structure
of NiO(111)-p(2 × 2) (Erdman et al 2000) and the c(8 ×
2) reconstructions of InSb(001), InAs(001), and GaAs(001)
surfaces (Kumpf et al 2001).

The algorithm we describe next likewise recovers the 3D
electron density of a complete surface unit cell from the data
of both ‘in-plane’ and ‘out-of-plane’ CTRs and SRs by finding
the complete surface structure factors (amplitude and phase)
contributing to both. Since the aim is to recover the electron
density rather than atomic positions, it does not impose an
atomicity constraint. Furthermore, in the case of a multi-
domain surface structures, where the domains are related by

symmetry operators of the underlying substrate, it is capable
of determining the full surface electron density of a single
domain from the diffraction data. After extensive testing on
simulated SXRD data (Saldin et al 2001a, 2001b, 2002b), the
method has now been successfully applied to at least three sets
of measured experimental data (Lyman et al 2005, 2006, Fung
et al 2007) leading to the solution of unknown surface phases
of Sb/Au(110) in the latter two cases.

5. Phase and amplitude recovery and diffraction
image generation method

An approximate representation of the surface electron density
may be found from an inverse Fourier transform of the
structure factors associated with this electron density. The
amplitudes of these structure factors associated with the SRs
are proportional to the square roots of the SR intensities,
and are thus directly accessible to experiment. The complex
surface structure factors associated with the CTRs are formed
from an interference between surface structure factors and
those of the deeper bulk-like atomic layers. What is measurable
is the resulting set of (real) intensities. Any attempt to
recover directly the surface electron density would need to
solve two problems: (1) to isolate the phase and amplitude
scattering contributions of the surface structure factors to the
CTR intensities, and (2) to determine the phases of the SRs.

By oversampling the continuous diffraction patterns from
non-periodic objects with respect to their Nyquist frequencies,
Miao et al (1999) were able to devise an algorithm that
was able to find the phases associated with the diffraction
amplitudes which are directly accessible from experiment.
The algorithm involves alternately satisfying constraints to the
experimental data in reciprocal space and a support constraint
in real space. Upon convergence, this algorithm yields the
phases associated with the diffraction amplitudes in reciprocal
space, and a ‘diffraction image’ of the object in real space.
In SXRD it is necessary to go further: although, for the
determination of the surface electron density, it is necessary
only to find the phases associated with the SRs, as in the
method of Miao et al it is necessary also to be able to
isolate both the amplitudes and phases of the surface structure
factors contributing to the CTRs, hence the name phase and
amplitude recovery and diffraction image generation method1

(PARADIGM) for the method we describe next.
The process of recovering the amplitude and phase of the

surface contributions to the CTRs from measurements of the
CTR intensities and a knowledge of the bulk contributions to
the CTRs is quite analogous to holography (Gabor 1948). The
latter is a technique in which the amplitude and phase of a
wave from an object (an object wave) is reconstructed from
the recording of an interference pattern (a hologram) between
it and a known reference wave. The analogy here is that the
set of unknown surface structure factors may be identified with

1 Of course, in no way does our use of the term ‘image’ in this context imply
a representation of the contents of any single unit cell. Rather, the term is used
in the sense of Bragg (1939), in his description of the recovery of the average
of the contents of a large number of unit cells from a diffraction pattern with
the device he termed an ‘x-ray microscope’.
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Figure 1. Flowchart of the PARADIGM for a single-domain surface.
The indicated operations are performed on all elements of the sets of
quantities enclosed by the braces. The individual elements of each
set are characterized by the subscripts. The notation ODO represents
object domain operations described in the text. Other symbols are
also defined in the text.

an object wave, the CTR intensities with a hologram, and the
set of known bulk structure factors with a reference wave.
The PARADIGM algorithm may be thought of as a numerical
method of performing a holographic reconstruction (Saldin
et al 2001a, Harder and Sadin 2003).

A schematic diagram of the algorithm is illustrated in
figure 1. This describes a set of repeated cycles of real space
operations on the left, and reciprocal space operations on the
right. The cycles may be initiated at the first (n = 0) iteration
with a flat distribution {u(n)

j } of the surface electron distribution
(where the subscript j refers to a real space voxel, a volume
pixel). The coefficients

S(n)

�q =
∑

j

u(n)
j exp (i�q · �r j ) (4)

of its Fourier transform at the nth iteration may be regarded as
estimates {S(n)

�q } of the surface structure factors corresponding
to a scattering wavevectors {�q} at the same iteration. Adding
this to the corresponding structure factors {B�q} of the bulk,
and taking the arguments of the resulting complex numbers
gives the estimated phases φ

(n)

�q of the corresponding total

structure factors {F (n)

�q }, whose amplitudes are constrained to

be {c(n)|Fobs
�q |}, where {|Fobs

�q |} are the corresponding measured
structure factors, and

c(n) =
∑

�q |F (n)

�q ||Fobs
�q |

∑
�q |Fobs

�q |2 (5)

is a scaling factor found by the least-squares minimization of
the difference between the observed and current estimate of
calculated structure factors.

Revised estimates {T (n)

�q } of the surface structure factors
may be found by subtracting from these estimates of the total
structure factors, the bulk structure factors (Marks 1999, Saldin
et al 2001a), i.e.:

T (n)

�q = c(n)|Fobs
�q | exp {iφ(n)

�q } − B�q . (6)

An inverse Fourier transform of these quantities would give a
new estimate

{t (n)
j } = FT −1{T (n)

�q } (7)

of the surface electron distribution that is constrained by the
experimental data.

The next step is the application of a constraint in real
space known as an object domain operation (ODO). Following
Fienup (1978) it is proposed to employ a constraint of compact
support, in our case in the direction normal to the surface (the
direction in which the data are oversampled). A solution to
the determination of the extent of the support region from the
experimental data alone for a general non-periodic object has
been suggested by Marchesini et al (2003), and subsequently
named the ‘shrinkwrap’ algorithm. In the present case, the
height of the surface slab defining a region of compact support
may be found by taking the 1D Fourier transform of the
intensity of a SR of low values of in-plane Laue indices, h
and k. This gives an estimate of the autocorrelation function
of the surface electron density in the direction of �a3, which
will be about twice the height of the surface slab. Since the
diffraction rods can be sampled at quite fine intervals along the
rods, a Fourier transform of such data used to calculate {t (n)

j }
will generally (i.e., if the phases are not correct) give non-zero
values over a range of heights much larger than the physical
height of the surface electron density. A real space constraint
may be imposed by defining a new estimate {u(n+1)

j } of the
electron density at the next iteration by Fienup (1978):

u(n+1)
j =

{
t (n)

j , j �∈ γ

0, j ∈ γ
(8)

where γ forms the set of grid points that lie in a region
not expected to contain electron density. The next iteration
of the algorithm consists of repeating the above steps, but
with {u(n+1)

j } substituted for {u(n)

j }, and the iterations may be
continued until successive estimates of the surface electron
distribution {u} do not differ appreciably.

Since the process described forms an iteration cycle which
is continued to self-consistency, it is relatively unimportant
whether the starting point is a flat distribution of electron
densities {u(1)

j } in real space, or a random set of phases {φ(1)

�q } in
reciprocal space (equation (6)). Independently of the starting
point, the algorithm generally converged within a few tens
of iterations to give a clean image showing concentrations of
electron densities, which may be interpreted as a set of initial
atom positions of a starting surface model for a subsequent
conventional refinement.

A successful application of this method to experimental
data from a known surface structure (Lyman et al 2005) is
shown in figure 2. This figure depicts a projection along a
[11̄0] direction parallel to the surface of the recovered electron
density of the outermost few surface layers, repeated over
three surface unit cells. The red discs in left-hand unit cell
indicate projections of the atom positions in a bulk-terminated
model. The PARADIGM recovers the established structure
with a top row of atoms normal to the plane of the figure
in each surface unit cell. Marked by red discs in the right-
hand unit cell are the projected atom positions determined by a

5
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Figure 2. [11̄0] projection of the recovered electron density from
experimental SXRD data from a Au(110)-(2 × 1) surface. The figure
shows the (2 × 1) surface unit cell repeated three times. The green
blobs are isosurfaces of the electron density recovered by the
PARADIGM. The small discs in the leftmost unit cell indicate
bulk-terminated locations, while in the rightmost one, the atom
positions are determined by a conventional chi-squared refinement.
These discs appear red when not enveloped by electron density
isosurfaces and yellow when they are. The rightmost unit cell shows
that the major features of the atomistic model are reproduced by the
electron density isosurfaces, for example, the missing row, the
inward relaxation of the second layer, and the buckling of
the third.

conventional χ2 analysis. Examination of the latter unit cell in
figure 2 shows that the major features of the atomistic model
are reproduced by the electron density isosurfaces recovered
by the PARADIGM, namely the inward relaxations of the

outermost layer, the outward relaxation of the second layer,
and the buckling of the third.

Application of the method to the determine the previously
unknown c(2 × 2)Sb/Au(110) overlayer structure was equally
successful (Lyman et al 2006), as may be seen from figure 3.

The basic scheme above applies strictly only to a single-
domain system. In equation (6) for instance, B�q can only be
subtracted from the scaled F�q if they are both single-domain
structure factors. However, surface structures frequently
consist of multiple domains related to each other by the
symmetry of the substrate. The existence of such domains
is usually not apparent from the symmetry of the diffraction
pattern, which continues to exhibit that of the substrate.
Nevertheless, it is important to consider the possibility of the
existence of such domains.

When multiple domains are present, the measured quantity
|Fobs| is an average over contributions from all the domains.
Nevertheless, even under such circumstances, it is possible to
usefully apply the PARADIGM. However, it is necessary to
distinguish two different cases: (1) where the spatial coherence
length of the radiation is smaller than a typical lateral domain
size, where the different domains scatter incoherently; and
(2) where the spatial coherence length of the radiation is
greater than the lateral size of a typical domain, where the
symmetrically related domains scatter coherently. We consider
these cases separately below.

0

0

1

2

0

1

2

1

1 2

1 2 1 2

2
Y

Y

X

X

Z Z

Figure 3. Three orthogonal projections of isosurfaces of the electron density of the surface unit cell of Sb/Au(110)-c(2 × 2), as recovered by
the PARADIGM. The x , y, and z axes are measured in units of a1 = 2.88 Å, a2 = 4.07 Å, and a3 = 2.88 Å, respectively, the defining vectors
of a bulk unit cell. The structure consists of Au and Sb adatoms positioned on hollow sites on an underlying Au(110) surface and forming
alternating diagonal rows. Note that all projections indicate atoms in the outermost substrate layer (at the intersections of the dotted lines) as
well as in the adatom layer (at the intersection of the solid lines).
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Figure 4. Same as figure 1 except for multiple incoherently
scattering domains. The recovered electron distribution {τ (1,n)} is
that of domain 1. The other symbols are defined in the text.

6. Incoherently scattering surface domains

When the lateral coherence length of the radiation is smaller
than a typical domain size, the measured intensities are
incoherent averages of contributions from all the domains,
j . Thus the theoretical estimate of the measured intensity at
iteration n for a scattering vector �q is:

|F (n)

�q |2 = 1

D

D∑

d=1

| f (d,n)

�q |2. (9)

Consequently, taking account of the scaling factor c(n)

between experimental and theoretical intensities, the estimate
at iteration n of the intensity contribution from any one domain
(lets call it domain 1) is therefore (Saldin et al 2002b):

| f (1,n)

�q |2 = c(n)DI�q −
D∑

d=2

| f (d,n)

�q |2 (10)

where I�q is the measured intensity for the scattering vector
�q, f (d,n)

�q = b(d)

�q + s(d,n)

�q is the total scattering factor from
domain d , consisting of a sum over the corresponding bulk
b(d)

�q and surface s(d,n)

�q structure factors, D is the number of

domains, and the scaling factor c(n) at iteration n is defined
by an appropriate generalization of equation (5). That is,
c(n)|Fobs

�q | in equation (6) is replaced by

√√√√
[

c(n)D|Fobs
�q |2 −

D∑

j=2

| f (d,n)

�q |2
]

(11)

and the bulk structure factor B�q in (6) replaced by the
bulk contribution b(1)

�q to domain 1. Since, for symmetry-

related domains, f (d,n)

�q = f (1,n)

�q ′ , where �q and �q ′ are related

by symmetry, the current estimate of the set of complex
amplitudes { f (1,n)

�q } will enable the calculation of the set

{ f (d,n)

�q } for each of the other domains d . Therefore the
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Figure 5. Three orthogonal projections of isosurfaces of the electron
density of the surface unit cell of Sb/Au(110)-(

√
3 × √

3)R54.7◦, as
recovered by the PARADIGM. The x, y, and z axes are measured in
units of a1 = 2.88 Å, a2 = 4.07 Å, and a3 = 2.88 Å, respectively,
the defining vectors of a bulk unit cell. The accuracy of this electron
density map may be judged by comparisons with the projected
positions of Au adatoms (red dots) and Sb adatoms (blue dots) as
found by a final conventional structure refinement, starting from the
atom locations suggested by the PARADIGM.

current estimates of the structure factor amplitudes {| f (1,n)

�q |}
from domain 1 may be made consistent with the experimental
data {|Fobs

�q |}via equations (10), (6), and (11). This is the
step at which the solution is constrained to be consistent
with the experimental measurements in reciprocal space. By
this procedure (the flow chart of figure 4) it is possible to
recover the electron distribution {u(1,n)

j } at the nth iteration of
a unit cell of any single domain (in this case domain 1) even
when multiple incoherently scattering domains contribute to
the measured diffracted intensities. After convergence, this
would be the recovered electron distribution of that domain.

A successful application of such an algorithm for structure
determination of one of the four incoherently scattering surface
domains of the Sb/Au(110)-(

√
3 × √

3) system (Fung et al
2007) is illustrated by the recovered electron density map
shown in figure 5. The accuracy of the structure determination
is indicated by the positions of the small colored dots, which
depict the projected positions in each of the three orthogonal
projections of the Au adatoms (red dots) and Sb adatoms (blue
dots), as determined by a subsequent conventional structural
refinement using the computer program of Vlieg (2000). The
structure consists of alternating pairs of Sb adatom rows
and single Au adatom rows. The conventional refinement
indicated adjacent Sb rows to be closer to each other than their
respective hollow sites, an indication of which subtle feature
is in electron density maps recovered by the PARADIGM. The
latter algorithm appears to recover the vertical (perpendicular
to the surface) displacements of the adatoms with somewhat

7
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Figure 6. Same as figure 1 except for multiple coherently scattering
domains. The recovered electron distribution {τ (1,n)} is that of
domain 1. The other symbols are defined in the text.

less accuracy, probably due to the smaller range of measured
data in the corresponding reciprocal space direction.

7. Coherently scattering surface domains

The problem of the recovery of the structure from coherently
scattering surface domains has been addressed in the literature
before (Saldin et al 2002b), where a scheme is described for
the recovery of the average electron density of all the domains.
However, a more useful algorithm would be one that, like that
for incoherently scattering domains (above), would recover the
structure of a single domain. In the following, we suggest such
an (as yet untested) algorithm (figure 6).

In the case of coherently scattering domains, the measured
diffraction amplitudes must be a sum of the scattered
amplitudes from each of the domains, and thus may be
estimated theoretically at iteration n as:

F (n)

�q = 1

D

D∑

d=1

f (d,n)

�q . (12)

Thus, the calculation of the electron density associated with
a particular surface domain, say domain 1, would proceed
exactly as before, except with the quantity c(n)|Fobs

�q | in
equation (6) replaced by

∣∣∣∣∣c
(n)D|Fobs

�q |exp{i(φ(n)

�q )} −
D∑

d=2

f (d,n)

�q

∣∣∣∣∣ (13)

and the quantity B�q is the same equation replaced by b(1)

�q , the
scattering contribution from the bulk to that particular domain.
Here also, the electron distribution {u(1,n)

j } is that in domain
1 after n iterations, and the desired quantity is its converged
value.

8. Inclusion of atomicity constraints

Starting the PARADIGM iterations with a flat surface electron
distribution is equivalent to approximating the phases of

the CTRs initially with those of the bulk structure factors
calculated from a knowledge of the bulk structure. Since the
bulk structure factor is the dominant contribution to a CTR
close to a Bragg peak, the phases of the bulk structure factors
are quite a good approximation to those of the CTRs close
to those Bragg peaks. This helps start the phasing iteration
loop close to the right solution for the CTRs, and increases the
likelihood of finding the correct CTR phases. Since there is no
bulk contribution to the SRs there is perhaps less confidence in
the determination of their phases.

A hybrid method would apply a PARADIGM-like
algorithm to the CTRs to initially determine just the surface
structure factor contributions to those rods (amplitude and
phase). It should then be possible to determine the phases
associated with the SRs (whose amplitudes are known from
experiment) via Sayre’s (1952) equations, from which we
deduce:

arg[S�q] = arg

[∑

�h
S�q−�h S�h

]
∀�q,∀�h. (14)

Since Sayre’s equation s assume an atomic (or peaked) electron
distribution, they are applicable if the data is measured up
to atomic resolution. For such data, these equations provide
further powerful constraints on the electron distribution. Both
the amplitudes and phases of those surface structure factors
on the RHS of (14) that correspond to CTRs will be known
from the initial run of the PARADIGM. The amplitudes of
those on the RHS that correspond to SRs will be known from
experiment, but their phases will initially be unknown. The
algorithm begins by assigning random values to those unknown
phases. If �q corresponds to an SR, its phase would then be
assigned by (14). Updating the SR phases in the RHS at
the next iteration and reevaluating the LHS quantities give a
further updated estimate of these phases. Although such an
algorithm has not yet been applied to experimental data, it has
been found in a computer simulation (Saldin et al 2003) that
repeated iterations appear to recover the correct values of the
SR phases. An inverse Fourier transform of the complete set
of determined surface structure factors, now known in both
amplitude and phase, then yields the sought surface electron
density.

9. Direct methods for low energy electron diffraction

A low energy electron diffraction (LEED) experiment is
performed by directing a beam of low energy (usually ∼50
to ∼400 eV) electrons into a sample and measuring the angle
and energy distribution of the elastic backscattering of the
electrons. In many respects the experiment is similar to that of
SXRD, except that the diffraction is of an electron beam rather
than of x-rays. A major difference between the interactions of
the two forms of radiation with matter is that electrons scatter
much more strongly from atoms.

Since a LEED pattern (the angular distribution of
backscattered electrons of a given energy) is formed by energy-
filtered electrons of energy close to those incident, such a
pattern is formed from electrons backscattered from just the

8
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outermost few surface atomic layers. Thus, unlike SXRD,
where glancing incidence of x-rays is used to increase surface
sensitivity, a LEED pattern from even normally incident
electrons is highly surface sensitive.

In addition, even the (elastically scattered) electrons which
contribute to a LEED pattern cannot be described by a
kinematic (or single-scattering) theory justified for SXRD.
Indeed LEED is a classic example of a strong multiple
scattering problem. However, as we demonstrate below, even
in this case it is possible to develop a direct method.

9.1. Holographic approaches

The earliest attempt to develop a direct method for LEED
appears to be the work of Pendry et al (1988) which was
aimed at deducing small deviations of a structure from a known
reference structure. Although they did not couch their scheme
explicitly in holographic terms, such a picture may be helpful
for didactic purposes. If the scattering amplitude from the
reference structure (a reference wave) is written as A(0)

ε , and
that from a perturbed structure (an object wave) written as δAε

(where ε ≡ (E, �g) is an index specifying a measured LEED
data point, where E is the electron energy, and �g specifies
a Bragg spot), then measured LEED intensities, Iε , may be
written:

Iε = |A(0)
ε + δAε|2

= |A(0)
ε |2 + {A(0)∗

ε (δAε) + A(0)
ε (δA)∗ε} + O[(δAε)

2]. (15)

It was pointed out that, according to the tensor LEED (Rous
et al 1986) approximation, the object waves δA could be
written in the form:

δAε =
∑

j

aε jσ j , ∀ε (16)

where σ j was the probability of an atomic displacement j
and the coefficients aε j may be found by a prior calculation.
Note that if this approximation holds, and if the terms
O[(δAε)

2] may be neglected (a linearization often assumed in
holography) then,

Iε − |A(0)
ε |2 �

∑

j

Tε jσ j , ∀ε. (17)

where
Tε j = {A(0)∗

ε aε j + A(0)
ε a∗

ε j }. (18)

Since the set of equations (17) may be written as a matrix
(or tensor) equation in which a known column vector on the
LHS is related to an unknown column vector {σ j } on the RHS
via a matrix of known elements {Tε j }, the elements of the
unknown column vector (and hence the distribution of atom
displacements from the reference structure) may be found by
matrix inversion.

Some applications have been reported (Pendry et al 1988,
Pendry and Heinz 1990) of a simpler version of this algorithm
which dispenses with the probabilities σ j and considers a
limit in which the elements Tε j are proportional to small
atomic displacements δr j , which are determined directly from
equations of the form (17). However, there appear to be few

applications of the more general equations (17) to larger atomic
displacements.

An explicit formulation of the holographic principle has
been proposed (Saldin and De Andres 1990) for the direct
recovery of structural information from a diffuse LEED pattern
from disordered adatoms on a surface. All electron paths
from the source to the diffuse part of the diffraction pattern
have to involve scattering from an adatom. After a final
scattering by an adatom, the sum of all scattering paths that
take an electron directly to the detector are identified with a
reference wave, while those which subsequently scatter off
substrate atoms are identified with object waves. Thus the
diffuse LEED pattern may be thought of as a hologram formed
by the interference between this reference and object wave,
and the atomic-scale structure of a cluster of atoms around the
adatoms revealed by computer reconstruction techniques (for a
review see e.g. Saldin et al 1997).

The measurement of a low-intensity diffuse LEED pattern
is quite challenging. In the case of an ordered overlayer of
adatoms, the diffuse diffraction pattern is replaced by a set
of more easily measured discrete fractional-order Bragg spots
(Heinz et al 2000, 2001). An application of the holographic
reconstruction algorithm to fractional-order LEED data was
the key to the solution of the rather complex (3 × 3)-SiC(111)
structure (Reuter et al 1997). Scanning tunneling microscopy
(STM) had suggested that each unit cell of this structure
contained a prominent adatom. Holographic reconstruction
rapidly revealed the form of the local 3D cluster of atoms in
the vicinity of each adatom. The discovery of this structural
motif eventually enabled the structure of the rest of the surface
unit cell to be found by a more laborious process of trial-and-
error model building and structural refinement.

It will be noted that the reason such a holographic method
is unable to easily directly solve for the entire structure of
a large unit cell is the inverse square decay of a spherical
reference wave source from a point atom. A powerful
extension of the holographic idea for surface crystallography
that would enable the determination of the structure of an entire
surface unit cell, or selvedge (Wood 1964) follows from a
redefinition of the holographic reference and object waves in an
analogous manner to that of the PARADIGM algorithm above.

9.2. Generalization of the PARADIGM for LEED

It will be recalled that (at least the CTR) SXRD data may be
thought of as a hologram formed by the interference of a known
reference wave due to scattering by the bulk of a sample and an
object wave from an unknown surface structure. In LEED, due
to multiple scattering, a clear separation of surface and bulk
scattering between object and reference waves is not possible.
However, it is possible to associate a reference wave with the
sum of electron paths involving scattering purely by atoms in
the known bulk structure, and the object wave with the sum
of those paths that include scattering by both surface and bulk
atoms (Saldin et al 2002a). Since the bulk structure is known,
here also it is possible to calculate the reference wave in its
entirety (amplitude and phase), although in this case it involves
a multiple scattering calculation (e.g., Van Hove and Tong
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1979). An algorithm closely analogous to the PARADIGM
would then be able to recover the amplitude and phase of the
object wave in this case.

As indicated by equation (4), in the case of SXRD, the set
of object waves {S�q} are the coefficients of a Fourier transform
of the surface electron distribution. This Fourier transform
relationship allows the quantity of interest, namely the electron
distribution of the surface unit cell, to be found by an inverse
Fourier transformation once a sufficient number of complex
amplitudes S�q have been found.

We are not so fortunate in the case of LEED with its
strong multiple scattering. However, it has been pointed
out (Saldin et al 2002a, 2002b) that, defining a distribution
{p(n)

j } of surface atoms, it is possible under the established
quasidynamical approximation (e.g. Bickel and Heinz 1985)
to write a corresponding linear relation

S(n)
ε =

∑

j

p(n)
j O(n)

ε j (19)

for the LEED object wave. In this expression, O(n)

ε j represents
an elementary object wave (Szöke 1993), the contribution to
the total object wave of an atom situated at voxel j . Here we
also specify all quantities by an iteration index n to indicate
they are all updated as the algorithm progresses through its
iterations.

A flow chart of an adaptation of the single-domain
PARADIGM algorithm for LEED is shown in figure 7. Note
the substitution of the atom distribution {p(n)

j } for the electron

distribution {u(n)
j } of the SXRD version of the algorithm.

Another difference is the substitution of equation (19) for
equation (4) for the calculation of the object wave coefficients
(in two steps) and the introduction of new iteration-dependent
matrix elements {Q(n)

jε } for the calculation in the bottom right-

hand box of the new atom distribution {t (n)
j } which is consistent

with the measured data. These matrix elements are defined by
the equations ∑

ε

Q(n)
jε O(n)

εk = δ jk (20)

where the RHS is a Kronecker delta. In other words the
matrix Q(n) is the inverse of the matrix O(n), and may be
found numerically from O(n) at each iteration by e.g. the
method of singular value decomposition (SVD) (Press et al
1992). We describe below the operational procedure for the
prior calculation, by means of a standard LEED program, of
the iteration-independent components, O(1)

ε j and O(2)
εi j , of the

elementary object waves O(n)
ε j .

First a surface unit cell is defined by slab whose lateral
dimensions should be apparent from the pattern of any
superstructure Bragg spots and a height h containing all parts
of the structure (the surface structure) that deviates from that
of the bulk. A grid of points { j} is defined within this surface
unit cell.

A standard LEED multiple scattering program is then
run to calculate the (complex) LEED amplitudes, say A(1)

ε j ,
for structures with a single surface atom on each of the
grid points j for energies E and Bragg spots g for which
there are experimental measurements. The calculation is

Figure 7. Adaptation of the PARADIGM for LEED for a single
surface domain. In this case the aim is to recover successively
improved estimates p(n)

j of the spatial distribution of atoms in the
surface unit cell (where n is the iteration index).

then repeated with no atom in the surface slab to find the
corresponding complex bulk scattering amplitudes Bε . The
first-order contribution, O(1)

ε j , to the complex elementary object
wave amplitudes is given by the difference between the above
two complex amplitudes, i.e.:

O(1)

ε j = A(1)

ε j − Bε . (21)

In the case of a surface unit cell with a single atom, these are
the sole contributions to the elementary object waves.

When there is more than one atom in the surface unit
cell full LEED calculations are performed to find the complex
LEED amplitudes A(2)

εi j for atoms at all combinations of grid
points i and j subject to constraints of non-overlapping atoms.
The second-order contributions to the elementary object waves
are then defined by

O(2)

εi j = A(2)

εi j − Bε. (22)

The scattering paths involved in the calculations of the
iteration-independent reference wave Bε and object wave
components O(1)

ε j and O(2)
εi j are illustrated in figure 8.

At typical LEED energies electrons scatter in the
forward direction much more strongly than in the reverse
direction. This allows the ordering of the contributions to
the total LEED amplitudes of electron scattering paths by the
number of backscattering events per path. Since LEED is
basically a backscattering experiment, the minimum number
of backscattering events from any path that contributes to the
LEED intensities is one per path. Since two backscatterings
do not return an electron to a detector outside the sample, the
next most important contributory paths are those that involve
three backscatterings, whose amplitudes are generally much
smaller. Thus a first (and usually quite good) approximation to
the LEED amplitudes is the neglect of all scattering paths with
more than one backscattering. The further quasidynamical
approximation (Bickel and Heinz 1985) allows scattering
by different atoms in the surface unit cell to be treated
independently.
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Figure 8. Scattering paths included in the calculation of the
iteration-independent quantities used in the LEED PARADIGM
algorithm. The dashed line indicates the scattering path for the
calculation of the reference wave Bε. The green, blue, red, and
magenta paths are summed in the calculation of the object wave
components O(1)

ε j . The solid black line represents the scattering path

evaluated in the calculation of the object wave component O(2)

εi j .

These approximations imply that regardless of the number
of atoms in a surface unit cell the maximum number of
surface atoms involved in any significant scattering path is two.
Consequently, to a good approximation, the total object wave
from surface atom scattering may be written

S(n)
ε =

∑

j

p(n)
j O(1)

ε j +
∑

j

p(n)
j

∑

i

p(n)
i O(2)

εi j (23)

from which equation (19) follows, with

O(n)
ε j = O(1)

ε j +
∑

i

p(n)
i O(2)

εi j (24)

where {p(n)
i } (or {p(n)

j } since i and j are dummy indices) is the
current estimate of the distribution of atoms in the surface unit
cell that is sought.

It should be noted that a consequence of retaining non-
linear terms in the sought distribution {p(n)

j } in the object
wave, S(n)

ε , and of retaining the non-linear terms in the object
wave in the estimate I (n)

ε = |Bε + S(n)
ε |2 of the LEED

intensities at iteration n, is that the common linearization
approximation (17) of holographic methods is avoided. This
allows this algorithm to solve structures quite far removed from
the reference structure (taken to be that of the truncated bulk),
as we will see in the following section.

10. Applications of the PARADIGM to LEED

This algorithm, or near variants2 has now been used to
successfully recover a number of surface structures from
experimental data. The earliest application (Saldin et al 2002a,

2 The earliest applications of the algorithm (Saldin et al 2002a, 2002b,
Seubert et al 2003) implemented the ODO operations (figures 1 and 7) by
the ‘maximum entropy’ prescription of Collins (1982) and did not include the
second-order term O(2)

εi j in the calculation of the object waves. We believe the
algorithm presented here to be more transparent and more accurate due to the
inclusion of the latter term.

(a)

(b)

Figure 9. Distribution {pj } of atoms in the surface unit cell of
c(2 × 2)-Br/Pt(110) as calculated by the PARADIGM from
experimental LEED data (Blum et al 2002). The distribution is
calculated on a (45 × 45 × 8) 3D grid representing the surface unit
cell and represented by small spheres whose radii are proportional to
the magnitude of pj at that point. The shade of each of these spheres
are correlated with its radius. The plan view of this distribution is
shown in the upper panel (a), while the side elevation is shown in the
lower panel (b).

2002b) was to the c(2 × 2)-Br/Pt(110) structure (figure 9),
where it was able to reveal the bridge site adsorption of the
Br atoms, and give a reasonable indication of the heights of
these atoms above the surface. It was also very successful in
recovering the more complicated (3 × 1)-Br/Pt(110) structure,
which is characterized by two Br adatoms per surface unit cell,
with different adsorption sites (short-bridge and long-bridge),
all of which features were accurately recovered (Seubert et al
2003), as illustrated in figure 10.

Another application has been to the (5×1)-Ir(001) surface
and various structures caused by the adsorption of various
species. The clean surface of (5 × 1)-Ir(001) has been the
subject of investigations for several decades (e.g. Ignatiev et al
1972, Van Hove et al 1981). It is a fascinating structure in
which the top surface layer accommodates an extra row of
atoms parallel to a (100) direction for every five subsurface
rows. More recent LEED work had uncovered exquisite details
of this structure, including minute bucklings and relaxations
down to the fourth layer from the surface (Schmidt et al 2002)
induced by the stress of accommodating the extra row in the
surface layer. Due to computer memory limitations on the
desktop computer employed, the real space grid of possible
atomic sites used for this calculation was restricted to x = i/6,
i = 0 to 29; y = j/2, j = 0 to 1; and z = 1 + 0.12k, k = 0
to 2 in the surface unit cell units of figure 11. The reference
wave was assumed to arise from scattering from layers deeper

11



J. Phys.: Condens. Matter 20 (2008) 304208 Topical Review

side elevation

plan view

Figure 10. Distribution {pj } of atoms in the surface unit cell of
(3 × 1)-Br/Pt(110), using the same representation as in the previous
figure, as calculated by the PARADIGM from experimental LEED
data (Deisl et al 2004). The side elevation is shown in the upper
panel and the plan view of this distribution is seen in the lower panel.
This suggests two inequivalent Br atoms in the surface unit cell
adsorbed on short- and long-bridge sites in agreement with a
conventional LEED analysis (Deisl et al 2004).

than the outermost, whose structure was taken to be that found
by Schmidt et al (2002). The distribution of atom positions
in the outermost (buckled and compressed) layer of Ir atoms
found by our algorithm (figure 11) consistent with the results
of previous LEED studies, in particular the quasihexagonal
structure of this outermost layer, and the correct distribution
of heights of these atoms above the second Ir atom layer. The
features in the surface unit cell furthest from the substrate
are consistent with atoms close to on-top sites relative to the
relatively unreconstructed second Ir layer, those at medium
height on bridge sites, and those deepest close to hollow sites.

A remarkable change in the structure is induced upon
exposure to H at temperatures above 180 K (Hammer et al
2003). The strain in the outermost Ir layer is relieved by one
atom per (5 × 1) surface unit cell ‘popping out’ of this layer
to form an adatom, while the previously compressed layer
deconstructs to form a normal bulk-like face-centered cubic
(001) layer. The ejected atom takes up an adatom structure
on a hollow site on this surface (figure 12). The string of
single adatoms per (5×1) surface unit cells align in a direction
parallel to the short axis of this surface unit cell to form a one-
atom-wide surface nanowire, as shown in the STM image of
figure 13. As will be seen from figure 14, the PARADIGM
correctly recovers the structure of the surface unit cell that
remains (5 × 1).

Of course the self-assembly of single-atom-wide nanowires
on a surface is of great interest due to potential applications in
nanotechnology. It turns out that such nanowires may form
templates for other interesting nanoscale structures (Klein et al
2004, Heinz et al 2004). It has been found that dosing such a
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Figure 11. Structure of the surface unit cell of clean Ir(001)-(5 × 1)
as recovered from experimental LEED data (Schmidt et al 2002) by
the PARADIGM. The electron energy range of the LEED data was
from 50 to 380 eV. The upper panel depicts the (XY ) projection of
the top layer structure as viewed from above the surface. The lower
panel is the X Z projection, or side view of the 3D structure as found
by the same algorithm. The X and Y axes are graduated in terms of
the lengths of the defining vectors of the 2D unit cell of the
underlying bulk. The intersections of the solid lines in the upper
panel mark the lateral positions of atoms in the second (bulk-like)
layer of Ir(001). The Z axis is graduated in terms of the spacing c of
bulk atomic layers parallel to the surface. The real space grid of
possible atomic sites used for this calculation was restricted to
x = i/6, i = 0 to 29; y = j/2, j = 0 to 1; and
z = 1 + k, . . . , k = 0 to 2 in units of the above surface unit cell
lengths. The reference wave was assumed to arise from scattering
from layers deeper than the outermost, whose structure was taken to
be that found by Schmidt et al (2002). The quasihexagonal structure
of the outer layer is revealed in the upper panel. The correct variation
of the heights of the upper-layer atoms above the bulk is revealed in
the lower panel, with the outermost atoms close to on-top sites on the
second layer, the medium-height atoms on the bridge sites, and the
lowest atoms close to hollow sites.

(a)

(b)

Figure 12. Schematic diagram of the deconstruction of the
compressed and buckled top layer of an Ir(001)-(5 × 1) surface by
the ejection from the layer of one of the two outermost atoms in the
(5 × 1) surface unit cell. This process of spontaneous symmetry
breaking (Poon et al 2006) forms a structure with the same (5 × 1)
periodicity and a single Ir adatom on a hollow site on a nearly
unreconstructed substrate.

surface with enough Fe to form 0.4 of a monolayer results in
the Fe atoms decorating the Ir nanowire on both sides to form
an interesting ribbon structure. The picture of the (5 × 1) sur-
face unit cell from LEED data from this surface recovered by
the same algorithm shown in figure 15 confirms this. For this
calculation, the substrate was taken to be the truncated bulk
structure of Ir, and the possible atom positions in the 3D sur-
face unit cell were specified by x = i/4, i = 0 to 19; y = j/2,
j = 0 to 1; and z = 1 − 0.06k, k = 0 to 2.
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20 Å 

Figure 13. Scanning tunneling microscopy (STM) image of a
surface of H/Ir(001)-(5 × 1). Surface prepared by exposure of a clean
Ir(001)-(5 × 1) quasihexagonal to 50 L of H2 at 300 K (Hammer et al
2003). Parallel rows of single-atom-wide nanowires of Ir adatoms
caused by the ejection from the quasihexagonal layer of one Ir atom
per (5 × 1) surface unit cell are clearly visible.

side elevation

plan view

Figure 14. Plan view and side elevation of the (5 × 1) surface unit
cell of H/Ir(001) as found from experimental LEED data by the
PARADIGM. The outermost Ir layer consists of a single adatom on a
hollow site of the underlying Ir(001) surface. The H atom is not
recovered by the algorithm. The axes are graduated in terms of the
lengths of the defining vectors of the 2D unit cell of the underlying
bulk.

Further adsorption of Fe results in the complete filling
of the nanotrenches between the decorated nanowires, when
the coverage reaches 0.8 monolayers. In this case, the same
algorithm recovers the structure of the (5 × 1) surface unit cell
shown in figure 16 in accord with the results of a previous
LEED analysis (Klein et al 2004, Heinz et al 2004). Other
details of the calculation were the same as for the above
calculation for the structure with 0.4 monolayers of Fe.

11. Conclusions

It would not be possible to determine the atomic-scale 3D
structures of macromolecules consisting of tens of thousands
of atoms by x-ray crystallography if the only tool at hand
was model refinement. Yet, until very recently, this is all
that has been available to the surface crystallographer. It is
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Figure 15. Plan view (XY ) and side elevation (X Z) of the
outermost surface layer of the 0.4 ML Fe/H/Ir(001)-(5 × 1) structure
as found by the PARADIGM from experimental LEED data with an
energy range from 50 to 580 eV (Klein et al 2004). The X and Y
axes are graduated in terms of the lengths of the defining vectors of
the 2D unit cell of the underlying bulk. The Z axis is graduated in
terms of the spacing c of bulk atomic layers parallel to the surface.
For this calculation, the substrate was taken to be the truncated bulk
structure of Ir, and the possible atom positions in the 3D surface unit
cell were specified by x = i/4, i = 0 to 19; y = j/2, j = 0 to 1; and
z = 1 − k, . . . , k = 0 to 2. Three likely atom positions are revealed
on neighboring hollow sites on the underlying bulk Ir(001) substrate.
The position highest above the substrate is identified with a larger Ir
adatom and those on the flanking hollow sites with the smaller Fe
atoms.
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Figure 16. Plan view (XY ) and side elevation (X Z) of the
outermost surface layer of the 0.8 ML Fe/H/Ir(001)-(5 × 1) structure
as found by the PARADIGM from experimental LEED data with an
energy range of 50 to 380 eV (Klein et al 2004). All hollow sites in
the surface unit cell appear to be occupied, with the feature highest
above the substrate identified with a larger Ir atom, and the four
features closer to the bulk in the adjacent hollow sites identified with
the smaller Fe atoms. Other details same as for figure 15.

the aim of producing some kind of approximate map of the
surface directly from measured diffraction data that motivates
the development of direct methods for surface crystallography.
At that point an atomistic model of the surface may be built
and its structural parameters refined by some kind of χ2 (or
reliability factor) minimization algorithm, just as in protein
crystallography.

Such algorithms, e.g. COBRA and PARADIGM, have
been developed in recent years and successfully applied to
experimental data of surface x-ray diffraction. In some cases
such algorithms have already enabled the solution of several
previously unknown structures.

It has been shown that, subject to some (reasonable)
approximations, the PARADIGM algorithm may be extended

13
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for low energy electron diffraction. The quantity sought in
this case is not the surface electron density but the density
(or probability distribution) of surface atoms. The time
required for the prior calculation of the second-order object
wave elements equation (22) can be considerable. If the
method of calculation is that adopted here, the time required
is approximately that to calculate the LEED intensities for all
possible positions of two atoms on a grid of, say, M points,
namely the time required for M2 LEED calculations. However,
this should be compared with the time required to calculate the
positions of N atoms distributed on the same grid is that for
M N LEED calculations. Thus, the time saving in comparison
to an exhaustive structure search if there are more than two
atoms in the surface unit cell is an extra factor of M for each
extra surface atom whose position is to be determined, since
multiple atoms in the surface slab show up as multiple peaks
in the atom probability distribution without significant further
expenditure of calculational effort (the time required to run
the PARADIGM algorithm to convergence once all elementary
object wave coefficients are known is trivial in comparison to
that expended in calculating these coefficients).

There are also great computer memory demands for the
storage of the elements of the elementary object waves. In
the examples shown in this paper, we have overcome these
obstacles by keeping the number of real space grid points in
the 3D surface unit cell relatively small. Nevertheless, we
feel that this demonstration of proof of principle is important,
and the method could become more practical in the future
with expected improvements of computational capabilities and
reductions in computational cost.
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Oszlányi G and Süto A 2004 Acta Crystallogr. A 60 134
Pendry J B and Heinz K 1990 Surf. Sci. 230 137
Pendry J B, Heinz K and Oed W 1988 Phys. Rev. Lett. 61 2953
Poon H C, Saldin D K, Lerch D, Meier W, Schmidt A, Klein A,

Müller S, Hammer L and Heinz K 2006 Phys. Rev. B
74 125413

Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992
Numerical Recipes: The Art of Scientific Programming
(Cambridge: Cambridge University Press)

Reuter K, Bernhardt J, Wedler H, Schardt J, Starke U and
Heinz K 1997 Phys. Rev. Lett. 79 4818

Rius J, Miravittles C and Allmann R 1996 Acta Crystallogr. A
52 634

Robinson I K 1986 Phys. Rev. B 33 3830
Rossman M G and Blow D M 1962 Acta Crystallogr. 15 24
Rous P J, Pendry J B, Saldin D K, Heinz K, Müller K and

Bickel N 1986 Phys. Rev. Lett. 57 2951
Saldin D K, Chen X, Vamvakas J A, Ott M, Wedler H, Reuter K,

Heinz K and De Andres P L 1997 Surf. Rev. Lett. 4 991
Saldin D K and De Andres P L 1990 Phys. Rev. Lett. 64 1270
Saldin D K, Harder R J, Shneerson V L and Moritz W 2001b

J. Phys.: Condens. Matter 13 10689
Saldin D K, Harder R J, Shneerson V L and Moritz W 2002b

J. Phys.: Condens. Matter 14 4087
Saldin D K, Harder R J, Vogler H, Moritz W and

Robinson I K 2001a Comput. Phys. Commun. 137 12
Saldin D K, Seubert A and Heinz K 2002a Phys. Rev. Lett.

88 115507

14

http://dx.doi.org/10.1088/0022-3719/18/35/008
http://dx.doi.org/10.1016/0039-6028(85)91070-2
http://dx.doi.org/10.1107/S0365110X59002274
http://dx.doi.org/10.1103/PhysRevB.65.165408
http://dx.doi.org/10.1103/PhysRevLett.56.2878
http://dx.doi.org/10.1038/143678a0
http://dx.doi.org/10.1038/298049a0
http://dx.doi.org/10.1103/PhysRevB.69.195405
http://dx.doi.org/10.1016/S0039-6028(00)00860-8
http://dx.doi.org/10.1107/S0108767307002930
http://dx.doi.org/10.1038/161777a0
http://dx.doi.org/10.1098/rspa.1954.0203
http://dx.doi.org/10.1103/PhysRevLett.91.156101
http://dx.doi.org/10.1016/j.apsusc.2004.07.021
http://dx.doi.org/10.1088/0953-8984/13/47/308
http://dx.doi.org/10.1016/S0079-6816(00)00011-3
http://dx.doi.org/10.1126/science.1925561
http://dx.doi.org/10.1016/0039-6028(72)90047-7
http://dx.doi.org/10.1209/epl/i2003-10135-x
http://dx.doi.org/10.1103/PhysRevLett.86.3586
http://dx.doi.org/10.1126/science.1279805
http://dx.doi.org/10.1103/PhysRevB.71.081402
http://dx.doi.org/10.1016/j.susc.2005.11.019
http://dx.doi.org/10.1103/PhysRevB.68.140101
http://dx.doi.org/10.1103/PhysRevB.60.2771
http://dx.doi.org/10.1038/22498
http://dx.doi.org/10.1107/S0108767303027569
http://dx.doi.org/10.1016/0039-6028(90)90022-Z
http://dx.doi.org/10.1103/PhysRevLett.61.2953
http://dx.doi.org/10.1103/PhysRevB.74.125413
http://dx.doi.org/10.1103/PhysRevLett.79.4818
http://dx.doi.org/10.1107/S0108767396003285
http://dx.doi.org/10.1103/PhysRevB.33.3830
http://dx.doi.org/10.1107/S0365110X62000067
http://dx.doi.org/10.1103/PhysRevLett.57.2951
http://dx.doi.org/10.1142/S0218625X97001176
http://dx.doi.org/10.1103/PhysRevLett.64.1270
http://dx.doi.org/10.1088/0953-8984/13/47/311
http://dx.doi.org/10.1088/0953-8984/14/16/303
http://dx.doi.org/10.1016/S0010-4655(01)00169-2
http://dx.doi.org/10.1103/PhysRevLett.88.115507


J. Phys.: Condens. Matter 20 (2008) 304208 Topical Review

Saldin D K, Shneerson V L and Fung R 2003 Physica B 336 16
Sayre D 1952 Acta Crystallogr. 5 60
Schmidt A, Meier W, Hammer L and Heinz K 2002 J. Phys.:

Condens. Matter 14 12353
Seubert A, Heinz K and Saldin D K 2003 Phys. Rev. B

67 125417
Sowwan M, Yacoby Y, Pitney J, MacHarrie R, Hong M, Cross J,

Walko D A, Clarke R, Pindak R and Stern E A 2002 Phys. Rev.
B 66 205311
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